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Abstract 

An X-ray diffraction profile analysis using a 
Hendricks-Teller model with a single second-neighbor 
interplanar correlation parameter gives good agreement 
with experimental diffraction scans on a highly-oriented 
pyrolytic graphite (HOPG) sample of C24Rb where the 
rubidium is in a disordered or liquid state. The 
stacking-fault probability is 0.20. It is noted that for 
crystals with a large mosaic distribution the resolution 
of low-index profiles is considerably degraded when the 
scan direction is parallel to the mosaic spread. The 
profile fitting permitted an accurate determination of the 
alkali contribution to the host Bragg peaks in the highly 
faulted material. 

Introduction 

"l:he graphite structure consists of a layered sequence of 
strongly bonded hexagonal-net planes of carbon atoms 
separated by a van der Waals gap of 3.35 A. These 
planes are stacked in a sequence ABAB.. .  in which the 
atoms in the B layer are shifted with respect to those in 
the A layer by an amount: 2/3 a~ + 1/3 a 2, where a l 
and a 2 are the unit-cell basal-plane translation vectors, 
and l a~l = l a21 = 2.46 A. The unit cell of this structure 
contains four atoms located at (0,0,0) (0,0,½), ~2 (~,~,0), 
(21 l~ (Kelly & Groves, 1970), and the resulting ~,~,~! 

diffraction pattern consists of two types of hk.l 
reflections" (1) l even, all h, k permitted; (2) l odd, only 
h + 2k = 3m + 1 (m = integer) permitted. 

Because the interlayer bonding is weak there can be 
extensive faulting in graphite. In particular, in highly 
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oriented pyrolytic graphite (HOPG) one may encounter 
a quite measurable density of stacking faults that arise 
during preparation (Moore, 1973). These faults consist 
mainly of shifts in the layer sequence noted above and 
may take the form ABABCBCBC .... for example, in 
which a packet of ABC is inserted in the AB sequence 
converting it to the equivalent BCBCBC...  sequence. 
The insertion of a piece of ABC into ABAB can be 
thought of as analogous to the introduction of an f.c.c. 
packet into h.c.p, where f.c.c, and h.c.p, refer to the 
face-centered-cubic and hexagonal-close-packed 
sequences. The shift of the C layer with respect to B is 
given by an additional 2/3 a~ + 1/3 a 2. 

Upon intercalation of the graphite with the alkali 
metals to stage 2, as in C24Rb, the stacking sequence is 
converted to A/AB/BC/CA/A . . .  (Parry, Nixon, 
Lester & Levene, 1969; Parry & Nixon, 1967; Nixon & 
Parry, 1968) in which A refers, as above, to graphite 
and the slashed line (/) refers to a layer of disordered or 
liquid-like alkali metal. The stage index refers to the 
number of carbon layers separating intercalate layers. 
In this case, it is convenient to consider a sandwich 
layer of graphite-alkali-graphite as a single unit. The 
graphite layers bounding the alkali are positioned 
directly over each other. The normal sequence for stage 
2 is then f.c.c, and faults consist of h.c.p, material 
inserted, nominally at random, in this f.c.c, sequence. 

If we calculate the structure factor for the f.c.c.- 
sequenced compound [composed of three layer units 
and actually of rhombohedral symmetry (R3m) rather 
than cubicl we obtain the following selection rules: (1) 
1 = 3m, only h + 2k = 3n permitted (m, n = integers); 
(2) 1= 3m + 1, only h + 2k = 3n + 1 permitted. The 
first set for 1 = 3m gives the same reflections that one 
encounters at / =  2m for the h.c.p, sequence. These 
reflections are therefore not affected by this type of 
faulting. The reflections of the second set appear at 
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different values of l in the two cases, naturally adjusted 
to account for the fact that the c-axis lattice parameter, 
cf.c.~. = (3/2) ch.~.o., and show directly the effect of 
faulting through a smearing and shifting of the intensity 
along 1 between the positions associated with the 
separate cases. Reflections such as 00./, 11.l, 30./and 
22.1 are unaffected whereas the profiles of the class 10.l 
and 21.1 show the faulting clearly and are examined in 
detail here. 

Stacking-fault models 

Two basic methods of deriving quantitative stacking- 
fault information from X-ray diffraction profiles have 
been developed and refined by many workers (Warren, 
1969; Hendricks & Teller, 1942; Kakinoki & Komura, 
1965). The first, as described by Warren (1969) for the 
case of deformed metals, considers two classes of 
stacking faults, deformation and twin, and assumes that 
each is independent of the other and randomly 
distributed with respective parameters t~ and ft. In the 
f.c.c, sequence, a twin fault with probability fl follows 
the scheme 

A BCA B CA BACBA CB, 

while a deformation fault, with probability a follows the 
scheme 

ABCABCABABCABC 

where, in both cases, the fault layer is underlined. These 
two differ in which of the two possible alternate layers 
follow the fault layer (A_B or A_C) since the f.c.c. 
sequence is regained after this point. It is clear that the 
deformation fault is simply two consecutive twin faults. 
Thus a and fl are not independent, and ~t =//2. The fact 
that this method has been successfully used to study 
stacking faults in cold-worked metals means that the 
correlated (double) twin fault which restores the 
original f.c.c, sequence is appropriate to the deforma- 
tion of an initially f.c.c, metal. 

A more general method for calculating the diffrac- 
tion pattern of a layered structure incorporating various 
types of one-dimensional (1D) disorder, including 
stacking faults and layer spacing variations, was 
developed by Hendricks & Teller (1942) and extended 
by Kakinoki & Komura (1965). The Hendricks & 
Teller (1942) calculations were originally applied to 
clays, in which hydration leads to a variation in layer 
spacing, and their treatment has recently been used to 
interpret the 00.l diffraction profiles in mixed-stage 
graphite intercalation compounds (GIC's) (Misen- 
heimer & Zabel, 1985; Huster, Heiney, Cajipe & 
Fischer, 1987). Stacking-fault profiles along 10.1 in 
stage 2 alkali-metal GIC's have also been examined by 
Hastings, Ellenson & Fischer (1979), Rousseaux, 
Tchoubar, Tchoubar, Guerard, Lagrange, Herold & 
Moret (1983), and Nishitani, Suda & Suematsu (1986). 

Hendricks & Teller (1942) also applied their general 
formulation to h.c.p/f.c.c, stacking faults in graphite. If 
one neglects correlations among faults, an /-dependent 
profile can be calculated using a single free parameter 
referred to here as XHT. The Hendricks-Teller method is 
based on the fact that the difference between h.c.p, and 
f.c.c, stacking sequences appears only at the next- 
nearest-neighbor, rather than the nearest-neighbor 
layer, i.e. ABA versus ABC. Therefore, rather than 
consider layers of carbon planes, this extension of 
Hendricks & Teller (1942) treats pairs of layers. 

If we pick a pair of layers we can, without loss of 
generality, label them (AB). Since a pure graphite layer 
will not be stacked directly over itself, the next pair of 
layers can be one of four possibilities, (AB), (A C), (CB) 
and (CA). The first choice results in h.c.p, stacking 
while the last gives f.c.c stacking. I fp  is the probability 
that the second pair is stacked (AB), then X.T is defined 
such that xHv p is the probability that the second pair is 
stacked (A C). If all three layer types (A,B,C) occur with 
equal frequency, xHv p is also the probability that the 
second pair is stacked (CB). Furthermore, the prob- 
ability that the second pair is stacked (CA) is x~vp. 
Since one of the four possibilities must occur, 

p + xnvp + xuvp + x2Hvp = 1; (1) 

thus 

p = 1/(1 + XHV) 2. (2) 

Therefore Xwr is the only parameter needed to describe 
the probability of any of the four possibilities. 

The correspondence between XnT and the stacking- 
fault probability, ctf.c.c., is given as follows. The 
probability that a pair of layers, or graphite-metal- 
graphite sandwiches, in a sequence (AB) is followed by 
a second pair in the sequence (CA), i.e. (AB)(CA), is 
x~vp. From (2) this can be written as (XHT)V(1 + X,T) 2. 
ABCA is f.c.c, stacking. If ctf.c.c, is the probability that a 
fault occurs in this sequence, then the probability that 
the (CA) pair follows the (AB) pair is (1 - uf.~.~.)2. 

1 -- 0tf.c.c. = XHT/(1 + XHv) 

~f.c.c. = 1 / ( 1 + x H 0 .  (3) 

Note that af.¢.¢, is/? in Warren's (1969) notation. 
In the present case, we must consider a unit-cell 

stacking of A/AB/BC/CA/A... in which the (AB) 
graphite pair considered above is replaced by (A/ 
AB/B). We will therefore be concerned with the actual 
structure factor of a given sandwich of graphite- 
alkali-graphite. The profile fits and analysis in this 
paper are part of a larger experimental program on 
anomalous scattering from the disordered C24Rb which 
uses synchrotron radiation at energies near the 
rubidium K absorption edge, the principal purpose of 
which has been to determine the enhancement of 
graphite Bragg peaks due to a Bragg-like contribution 
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from the host-modulated alkali intercalate (Thompson, 
Moss, Reiter & Misenheimer, 1985; Thompson, 1987; 
Thompson & Moss, 1987). A profile analysis is 
necessary for a determination of this modulated-liquid 
contribution to the sandwich-layer structure factor of 
the fault-broadened peaks. A full description of the 
anomalous-scattering experiment is given in Thompson 
& Moss (1987). 

Experimental  

The scans described here were taken at room tem- 
perature at the Stanford Synchrotron Radiation 
Laboratory (SSRL) on an HOPG sample of C24Rb, 
which was sealed in helium in an aluminium can and 
was provided by H. Zabel. The energies were chosen in 
general near the rubidium absorption edge at 
15.203 keV (0.815/~) for purposes of anomalous 
scattering. The energy used for the profiles discussed 
here was 14.700keV (0.84 A). The morphology of 
HOPG is polycrystalline with the a axis randomly 
oriented from grain to grain but with c axes of different 
grains aligned perpendicular to the surface of the 
fiat-plate geometry of the specimens (Moore, 1973). 
The mosaic spread of the c axis in the intercalated 
specimen was approximately 2-5 ° . The sample was 
approximately 10 x 10 × 0.5 mm. The c-axis dimen- 
sion was 27-12 ./k and the a-axis dimension was 2.47/k. 
The stacking-fault-broadened profiles were corrected 
for absorption in the asymmetric transmission geom- 
etry for a flat plate (Cullity, 1956), and for the 
geometrical correction given by 

22/[cos(0- ct)sin0], (4) 

where the sin0 term takes account of the resolution 
element perpendicular to the scan direction when the 
collimation in this resolution element is smaller than the 
mosaic spread (Axe & Hastings, 1983), and the 
remainder of the geometrical function is calculated 
using the Buerger (1960) treatment for scans at 
constant qt intervals. A polarization correction was not 
applied because the synchrotron beam is over 98% 
polarized perpendicular to the diffraction vectors used 
in the experimental geometry. 

Fig. 1 illustrates schematically the Bragg peaks 
observed in the diffraction patterns appropriate to 
HOPG of the stage 2 alkali-metal GIC's. Note that the 
selection rule h + 2k + l = 3n is followed. The two- 
dimensional disordered alkali-metal layers give rise at 
room temperature to strong diffuse scattering seen 
between the 10.0 reflection and the origin (Parry et al., 
1969; Clarke, Caswell, Solin & Horn, 1979; Mori, 
Moss & Jan, 1983; Ohshima, Moss & Clarke, 1985). 
Although the sequence of layers along e* is ordered, the 
00.! peaks are not affected by the in-plane alkali-metal 
layer correlations. Several crystallographic parameters 
necessary to the profile analysis may therefore be 
unambiguously determined for the sample by analysis 
of the 00.l intensities. The deviation from exact 
stoichiometry (x), the c-axis components of the 

(BRb~Bc), rubidium and carbon Debye-Waller factors i t 
and the ratio of the sandwich thickness to unit-cell 
c-axis dimension (c~) were determined in this manner. 
The symbol x enters into the stoichiometry as C24/xRb. 
The 00.1 structure factor per sandwich is given by 

F00.J3 = 4fc exp(-Mtc)COS(rdc,) 

+ (X/6)fRbexp(--MIR,). (5) 

The quantity My equals By(q~/16z?), where y signifies 
carbon or rubidium. For our wavelength at an energy 
approximately 500 eV below the rubidium absorption 
edge, tabulated values of calculated dispersion correc- 
tions (Sasaki, 1984) were assumed to be sufficiently 
accurate. At the other energies studied (15.188, 
15-198 keV) self-consistent dispersion corrections were 
experimentally determined. 

Results  and analysis  

Figs. 2 and 3 show fault-broadened profiles along 10./ 
and 21.1 respectively. The 1 1.l profile shown in Fig. 4 is 
not affected by faulting and can be used to assess the 
instrumental contribution to Figs. 2 and 3. This will be 
significant because of the way that the resolution 
volume intersects the mosaic spread in our / scans. 

The broadened profiles were fitted by the Hendricks- 
Teller model with a single nearest-neighbor interplanar 
correlation parameter X.T. 

HOPG C2~Rb 

II 
I ! 
I ! 

o (00) Rbliquid (10) (l]) (20) (21) (3o) (~2) 
scattering 

Fig. I. Schematic of scattering from a stage 2 HOPG alkali- 
metal-graphite intercalation compound. The stacking-fault- 
broadened peaks are indicated by lines joining the reflections. 

,~(XHT, ~) = 
(1 + ,X'HT) 2 

(4 - -  3XHT2) I/2 

/ ( 4 -  3x .rZ) ' /2(2-  cos~p/2) + 3iX,,rsinrp/2 ~ 2 + 4cosrp/2 

x -[ 2(I + XHT)""'-~S]'2 Z XHT---'~- L'XHT('-'-'4 S 3x.----~--)"-le-xp(-irp-----~ 

(4 - 3x.TZ)'/Z(2 -- COS~p/2) -- 3iX.TSin~p/2 + 2 -- 4COS~p/2 ] 
+ 

~ ~ i . , ~  • 2(1 + X,,T) ' - -12 - -X.T"  + X.T(4 -- 3X.T') -lexp(--t¢0 J 

+ complex conjugate - (2 - costp/2). (6) 
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The variable ~p is equal to 2rd/3.  Equation (6) is 
equation (34) from Hendricks & Teller (1942), in which 
the single variable x m  has the value of infinity for a 
perfect f.c.c, stacking sequence, and zero for perfect 
h.c.p. 

While the stamps of the profiles in Figs. 2 and 3 are 
determined by the fault probability, the calculation of 

on 
¢- 

o~ 

r-. 

r-. 

I i I f 

(~o./) 
C24Rb 

0 2 6 8 10 12 14 16 18 20 22 

l 
Fig. 2. (10./) experimental profile and Hendricks-Teller fit with a 

projection convolution applied whose width has been calculated 
with equation (10) and the values indicated in the text. The solid 
line is the calculated fit. The stacking-fault probability was fixed 
at 0.20. 

the relative intensity requires a knowledge of the 
structure factor per stacking unit which in this system is 
a graphi te-metal-graphi te  sandwich. This enters into 
the fitting procedure as a function I Fhk.tl 2 which is 
multiplied by the Hendricks-Teller profile function 
in (6). A constant normalization factor is also used to 
scale the total calculated profile to the experimental 
profile: 

Ihk. I :- N ~ ( X n t  ' q) l Fhk.t I 2. (7) 

The rubidium contribution to the graphite Bragg 
peaks other than 00.l depends on the in-plane structure 
of the alkali-metal layer and the attendant interaction 
between the alkali metal and the graphite matrix. The 
diffuse scattering in Fig. 1 extends rod-like in the l 
direction, implying that there are no R b - R b  correla- 
tions between the liquid layers, and the diffuse maxima 
in the ( h k )  direction are not commensurate with any 
graphite distances. Modulation effects are evident, 
however, as seen in single crystals (Parry, 1977; 
Rousseaux, Moret, Guerard, Lagrange & Lelaurain, 
1984, 1985; Clarke et al., 1979) and inferred from 
careful H O P G  studies (Ohshima et al., 1985). At the 
primary graphite Bragg peaks, it was also realized 
(Nixon & Parry, 1969; Ohshima et al., 1985; 
Rousseaux et al., 1983) that the intensities could be 
better fitted by including an appreciable contribution 
from the intercalated metal species. 

It has been shown (Reiter & Moss, 1986; Moss, 
Reiter, Robertson, Thompson,  Fan & Ohshima, 1986) 
that the alkali-metal contribution to the graphite Bragg 
peaks arises from a modulation of the two-dimensional 
liquid by the graphite potential, which also causes weak 

=~ 

/ 

(21 .I) 
C24Rb 

2 4 6 8 10 12 14 16 

l 
Fig. 3. (21./) experimental profile. The solid line is the Hendricks- 

Teller fit with a projection convolution applied. The stacking-fault 
probability was fixed at 0.20. 

j 
J 

(11./) 
C24Rb 

2 4 6 8 10 12 14 16 18 20 22 

/ 

Fig. 4. (11./) profiles showing peak broadening due to projection 
convolution. The width of the peaks follows the relation in 
equation (10). 
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Table 1. Values o f  crystallographic parameters deter- 
mined f rom O0.1 integrated intensities (Thompson, 

1987) 

c I x,toi~ h Btc B~t, R 
0.2105 (1) 0.93 (3) 0.63 (6) 0.46 (14) 0.032 

angular anisotropies in the liquid scattering, as seen by 
Clarke et al. (1979), Parry (1977) and Rousseaux et al. 
(1984). The effect on the scattering pattern, particularly 
on the Bragg peaks at the graphite reciprocal-lattice 
vectors Ghk.1, may be calculated, and the structure 
factor for the Bragg-like amplitude contribution of the 
modulated liquid at Gm,.t is derived in detail elsewhere 
(Reiter & Moss, 1986). The final result for the structure 
factor of a single graphite-alkali-graphite sandwich for 
reflections other than 00.l is given below, where the 
effective modulation parameter, (p'(Ghk)), contributes 
for all / at constant hk: 

Fhk./3 = 4 f cexp(-Mic)exp(-Mnck)cos( nlc 1) 

x cos[2n(h + 2k)/31 

+ (X/6)fRbeXp(--MtRb) (p'(Ghk)). (8) 

Most of the parameters could be determined from 00.l 
analysis (Thompson, 1987) and are in Table 1. The 
goodness of fit, R, has been calculated as ) - - [ Iexot l -  
/calc I/~--Jexptl. The final unknowns include the modula- 
tion parameters (p'(GnK)), which are related to the 
strengths of each of the (hk) Fourier components of the 
modulation potential (Reiter & Moss, 1986). We also 
require the in-plane Debye-Waller factor for the 
carbon, Bkc k. (There is no in-plane rubidium Debye- 
Waller factor for the two-dimensional liquid.) No 
functional dependence of (p'(Ghk)) is assumed a priori. 
The value of the Fourier coefficient for each constant 
(hk) set will be determined from a fit to the scattering 
data along l. 

Both of the above parameters, (p'(Ghk)) and B~c k, are 
constant at a given (hk). The B~ k term enters as an 
exponent similar to Bto The value of 0.67 was taken 
from the work of Ohshima et al. (1985). While the 
registry model employed in that work was provisional, 
the extraction of a carbon Debye-Waller factor was 
reasonably accurate. 

The parameters (p'(Ghk)) and xH-r were found 
through fits to the experimental profiles. The parameter 
(p'(Gnk)) enters into the expression for I Fhk.tl z through 
(8) and affects the relative intensities in (7) while the 
profile shapes are principally affected by the parameter 
XnT in (6), as well as by broadening introduced by the 
projection on l of the mosaic spread of the sample. 

During a scan along l, the mosaic spread of the 
reflections becomes increasingly parallel to the scan 
direction as l decreases. If the resolution element is 
small compared with the mosaic spread, the apparent 
width of the reflection will increase dramatically as / 

approaches zero. This is clearly seen in a non- 
stacking-fault-broadened scan such as the 11.l profile in 
Fig. 4. The projection of the radial width along 1, due to 
the mosaic spread is 

6,Jsin a, (9) 

where fir is the radial width of the peak and tan 

tl = ql/qhk . 
The full width at half maximum (FWHM) of 

non-stacking-fault-broadened peaks was fitted to 

(FWHM) 2 = ( f / s in  a)2 + A 2, (10) 

and 3r was found to be 0.014 A -~, which compared 
well with the FWHM of the hk.O peaks of 0.015 A-L 
The A contribution, which was found to be 0-019 A-~, 
was included as a constant width in 1 owing to defects in 
staging, or to a limited correlation range (particle size) 
along e* (Kan, Misenheimer, Forster & Moss, 1987). 
This latter contribution to the FWHM in (10) is 
negligible at low l or in relation to the observed 
stacking-fault broadening in Figs. 2 or 3. 

Segments of the 10.l profiles, which were chosen to 
include a zero of Fhk.i, were  fitted for (p'(G~0)) and XHT 
values without including projection convolution 
broadening. The (p'(G~0)) parameter was found to be 
0.48 (2), and the x m  varied from 3.2 to 3-4. It was 
expected that the XHT values would vary slightly for 
different regions and would be slightly smaller than 
their true value in order to accommodate extra 
broadening due to the projection convolution. 

The broadening due to the projection convolution is 
of the order of the stacking-fault broadening for the 21./ 

2 

>~ 

4 5 6 

I 

Fig. 5. The 21.4-21.5 experimental profiles and Hendricks-Teller 
profiles with the projection convolution applied used to estimate 
the true XHT. The xm-parameter varies from 3.5 to 4.5. It is 
estimated that the best fit for xnl, including the projection 
convolution broadening, was equal to 4, which gives a stacking- 
fault probability of 0.20. 
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profiles, and therefore had a larger effect on the peak 
widths than in the 10.l profiles. The 21.4-21.5 pair, 
which are fairly insensitive to (p'(G21)), were then used 
to determine X.T when the convolution broadening, as 
calculated by (10), was applied. This is shown in Fig. 5. 
The XHT, consistent with the XHT found in the 10.I fits, 
was 4.0 (5), which converts to a stacking-fault 
probability of 0-20. Since the distance between centers 
of sandwiches is 9 . 0 4 A ,  this corresponds to a 
coherence length of 45 A along the c axis. 

With this value of x.T, the (p '(Gl0))  parameter 
found with the partial region fits, and the convolution 
width calculated by (10), the total experimental 10.1 
profile could be modeled, as shown in Fig. 2. When the 
(p'(G21)) parameter was allowed to vary, the 21.l 
profile in Fig. 3 was fit and (p'(G2~)) was found to be 
0.04 (1). 

Conclusion 

A Hendricks-Teller profile analysis of the stacking- 
fault-broadened diffraction scans in an H O P G  sample 
of C2aRb has been performed. The excellent fits which 
this model gives, utilizing only a second-neighbor 
interplanar correlation parameter, indicate that the 
faults are largely uncorrelated and preserve the 
graphite-metal-graphite  sandwich. The Hendricks-  
Teller parameter describing the disorder in the sample 
was found to be 4, which corresponds to a stacking- 
fault probability of 0.20. By carefully applying the 
profile-fitting method to our data we were able to 
extract accurate values for the rubidium contributions 
to the graphite peaks in the disordered (liquid) alkali 
state. It has been noted that for these highly mosaic 
samples, caution must be taken when scanning regions 
parallel to the mosaic spread. 
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